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Quantum computation and communication exploit the quantum properties of superposition and
entanglement in order to perform tasks that may be impossible using classical means. In this
Colloquium recent experimental and theoretical progress in the generation of entangled quantum
networks based on the use of optical photons as carriers of information between fixed trapped atomic
ion quantum memories are reviewed. Taken together, these quantum platforms offer a promising
vision for the realization of a large-scale quantum network that could impact the future of
communication and computation.
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I. INTRODUCTION TO QUANTUM NETWORKS

A. The dream of a quantum internet

The world wide web is an indispensable resource for
modern society. The information transmitted through
the internet is classical in the sense that the information
is encoded by a string of bits, each of which is in one of
the two definite states, either 0 or 1. In contrast, quan-
tum information can be represented by quantum super-

position states, such as ��0�+��1�, with arbitrary normal-
ized superposition coefficients � and �. When more than
one such quantum bit �qubit� is considered, entangled
superposition states such as ��0��0�+��1��1� can also be
created. Measurements of the entangled qubits result in
strong correlations even though the individual qubits are
not well defined and may not even have a direct link at
the time of measurement. Entangled qubits thus possess
an extra connection between memory elements that is
absent with classical bits. With clever use of such en-
tangled qubits, superfast computation and secure com-
munication can be achieved within the new discipline of
quantum information processing �Nielsen and Chuang,
2000�. Given such promising applications, it is natural to
consider a quantum internet �Kimble, 2008�, whereby
entangled quantum states are shared among many
nodes, and appropriate measurements may provide new
opportunities in communication and computation.

Similar to classical networks, quantum networks con-
sist of distributed processors that are connected through
communication channels. Local quantum processors
used to store and/or process quantum information are
hereby referred to as quantum nodes. Quantum commu-
nication channels transfer quantum information be-
tween quantum nodes, which may be at distant loca-
tions. In practice, quantum communication channels are
usually represented by optical photons, as this system
can carry quantum information to distant locations at
high speed, and optical fibers provide a practical way to
guide photon pulses with little disturbance. However,
even with the best fibers photon pulses still decay expo-
nentially over distance due to light absorption and scat-
tering, leading to the degradation of the signal. Classi-
cally, this is mitigated through the use of repeater
circuits, which periodically amplify the signal before any
significant degradation. Quantum mechanically, a simple
extension of this idea does not work because unknown
quantum signals cannot be amplified or copied accord-
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ing to the well-known quantum no-cloning theorem
�Wootters and Zurek, 1982�. However, it is indeed pos-
sible to send quantum signals over arbitrary distances
using a more complex communication protocol known
as a quantum repeater �Briegel et al., 1998�. Here a
quantum entangled state is repeatedly purified over a
distance through the introduction of a network of inter-
mediately located quantum nodes with extra quantum
bits �Bennett et al., 1996�. Purified quantum entangled
states of the network can then be used for quantum
cryptography �Gisin et al., 2002� or for faithful transmis-
sion of quantum signals over long distances through the
quantum teleportation protocol �Bennett et al., 1993�.

Quantum networks can be divided into two major
classes: �1� quantum communication networks for the
transmission of quantum information, perhaps over long
distances with quantum repeater circuitry; and �2� quan-
tum computation networks for the distribution of quan-
tum entanglement over large numbers of quantum
memories for large-scale quantum processing. A quan-
tum repeater network is shown in Fig. 1�a�, where the
communication channel is broken into n segments with
the communication distance of each segment within the
signal attenuation length. One first establishes purified
entangled states for each segment and then performs
measurement on the intermediate nodes to connect the
segments and obtain an entangled state over long dis-
tance, which can be used for subsequent transmission of
quantum signals. A distributed quantum computation
network is shown in Fig. 1�b�, where local quantum pro-
cessors, each with a small number of qubits, are wired
together through photonic channels. This approach to
quantum computing is compelling for physical platforms
that excel for small quantum registers but cannot easily
be scaled to large numbers of qubits. By connecting the
small well-behaved quantum registers through photonic
channels, one can increase the size of the system without
limits, and allow scalable quantum computation. Future
quantum networks may involve a combination of the
above two prototypes, as it is desirable to have both long
communication distances and large computational sizes.

B. Probabilistic versus deterministic approaches to quantum
networks

Quantum communication channels are naturally car-
ried by photons. On the other hand, quantum nodes are
best implemented with material qubits to provide long
storage times for quantum information. For instance, the
hyperfine levels of the atoms �neutral or charged� have
long coherence times and are a good choice of the sta-
tionary qubits at the quantum nodes. To realize a quan-
tum network, we must coherently transfer quantum in-
formation from the stationary matter qubits to the flying
photon qubits. There are two methods to achieve coher-
ent information transfer between material and photonic
qubits. The deterministic approach relies on high-quality
optical resonators �cavities� to achieve the strong-
coupling condition �Cirac et al., 1997�, and scaling to
larger entangled networks is straightforward in principle

but difficult in practice. The probabilistic approach
�Duan et al., 2001; Duan and Monroe, 2007� does not
require strong-coupling cavities �although cavities are
still helpful to boost up the coupling efficiency� and is
more robust to noise. However, probabilistic protocols
rely on special error-correction protocols with a certain
overhead in qubits and time to achieve efficient scaling
to large-scale networks.

When an optically active material qubit is excited with
a laser, it normally couples to an infinite number of op-
tical vacuum modes throughout the entire emission solid
angle. The coherent transfer of quantum information re-
quires a particular optical mode to be selected as the
photonic qubit, and coupling of the material qubit to all
other modes must be suppressed. In the deterministic
approach, this selection is achieved through a high-
quality cavity which enhances the coupling to the de-
sired cavity mode �Kimble, 2008�. The residual coupling
to the other optical vacuum modes in free space can be
considered spontaneous emission noise. For a high
signal-to-noise ratio, we require the condition C
�g2 /���1, where g is the coupling rate of the material
qubit to the cavity mode, � is the cavity decay rate, and
� is the spontaneous emission rate. The ratio 1/C is a
measure of the fraction of the light entering the wrong
modes and thus characterizes the fidelity error of a de-
terministic quantum operation. In the probabilistic ap-
proach, the detection of photons in the scheme allows us
to know when the emitted photon has entered the cor-
rect mode. This built-in photon detection thus trades fi-
delity error in the deterministic approach to a lower ef-
ficiency �success probability less than unity� in the
probabilistic scheme. However, when the operation suc-
ceeds, this lower efficiency has no influence on the re-
sulting fidelity. This efficiency error is therefore her-
alded, which allows scaling methods that can tolerate
very high efficiency errors �very low success probabili-
ties� �Duan et al., 2001; Duan and Monroe, 2007�. Be-
cause of this inherent error detection, the probabilistic
schemes are in general more robust to noise compared
with the deterministic schemes. In this Colloquium, we
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FIG. 1. �Color online� Illustration of different quantum net-
works. �a� Illustration of a quantum repeater network to ex-
tend the communication distance. �b� Illustration of a quantum
computation network with many interconnected quantum
nodes to extend the computational size.
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focus on the probabilistic approach to quantum net-
working which has inherent robustness to the dominant
sources of noise in real experiments.

C. Physical systems for implementation of quantum networks

While the most natural platform of a quantum com-
munication channel is photons, the quantum nodes can
be implemented with various material systems, given
that the coherence time of the quantum memory is suf-
ficiently long. Atomic systems are particularly well-
behaved quantum nodes with quantum information
stored, for example, in different hyperfine levels within
the ground-state manifold of the atoms, as in microwave
atomic clocks.

Two well-studied approaches for atomic qubits are
atomic ensembles and single atoms. Following the so-
called Duan-Lukin-Cirac-Zoller �DLCZ� scheme �Duan
et al., 2001�, atomic ensembles are widely considered as
quantum nodes for quantum communication and quan-
tum repeater networks. Here quantum information is
stored in a collective excitonic state of an ensemble of
atoms, and due to the interference of the photon emis-
sion from different atoms, this collective atomic state
couples primarily to photon modes propagating in par-
ticular directions �Duan et al., 2002�. The resulting col-
lective enhancement effect can be exploited to dramati-
cally improve the coherent coupling between the
collective atomic qubit and the photonic qubit. In recent
years, remarkable experimental progress has been
achieved along these lines, and we refer to a recent re-
view for a detailed account on this approach and a com-
prehensive list of references �Kimble, 2008�. The coher-
ence �storage� time in atomic ensemble qubits is mainly
limited by inhomogeneous magnetic fields throughout
the atomic sample to the microsecond time scale
�Kuzmich et al., 2003�. By switching off external mag-
netic fields and exploiting the atomic Mott insulator
phase in a three-dimensional far-tuned optical lattice,
longer coherence times up to hundreds of milliseconds
have been achieved recently �Schnorrberger et al., 2009�.
For this ensemble approach, although experiments are
primarily based on clouds of neutral atoms, it is conceiv-
able that other ensembles of particles could work
equally well given long enough coherence times. For in-
stance, there have been proposals for using ensembles of
impurities in solids or quantum dots for implementation
of quantum nodes �Staudt et al., 2007�.

Single atoms �charged or neutral� can also be used to
implement the quantum nodes. We consider, in particu-
lar, single atomic ions as their additional charge degree
of freedom allows them to be trapped easily for a long
time. For single emitters, there is no collective enhance-
ment effect for the light-atom coupling, so the connec-
tion efficiency of two segments of entanglement is typi-
cally much smaller compared with that of atomic
ensembles. However, single atomic ions offer their par-
ticular advantages. First, single ions can be easily con-
fined with internal-state-independent traps for weeks or
longer, which allows a much longer operation time. The

magnetic field insensitive “clock” states in trapped ions
provide a particularly clean realization of a quantum
memory, where coherence times of a few seconds are
routine and can even approach the hour time scale �Bol-
linger et al., 1991�. Second, atomic qubits within trapped
ions can be detected with near-unit detection efficiency
through optical cycling transitions �Blatt and Zoller,
1988�. Finally, unlike atomic ensembles, single atomic
ions can be used for both quantum computation and
communication networks �Duan et al., 2004, 2006�. We
also note that trapped ions remain as one of the leading
candidate hardwares for quantum computation based on
local gates through their Coulomb-coupled motion
�Cirac and Zoller, 1995; Blatt and Wineland, 2008�.
Therefore, the coupling of trapped ions to flying photo-
nic qubits provides an interface between computation
and communication qubits. A compelling possibility is a
hybrid network that uses both the photonic coupling and
the local Coulomb interaction. With trapped ions, the
connection of various entangled segments can be
achieved with local deterministic Coulomb-based gates
instead of the probabilistic photon coupling, which could
offer a more efficient network.

In this Colloquium, we focus on the use of trapped
ions as quantum nodes, although some of the control
schemes and the theoretical scaling methods discussed
here can be readily applied to other experimental sys-
tems. In Sec. II, we review the recent experimental
progress on protocols for trapped ion photonic quantum
networking. In Sec. III, we detail scaling issues in ion or
photon probabilistic networks in the context of long-
distance quantum communication and large-scale quan-
tum computation. Section IV concludes with a future
outlook in photonic networks based on ions and other
matter qubits.

II. TRAPPED ION QUANTUM NETWORK EXPERIMENTS

Trapped ions can be entangled through photonic net-
works using a variety of quantum optical techniques
�Cirac et al., 1997; Cabrillo et al., 1999; Duan et al., 2004;
Moehring, Madsen, et al., 2007�. Current experiments
follow the probabilistic protocols that offer more robust-
ness to noise �Duan et al., 2004; Moehring, Madsen, et
al., 2007�. Typically, two ions are linked by first entan-
gling the qubit state in each ion �denoted by |0� and |1��
with an attribute of a photon and then coupling the two
photons on a beam splitter or other interference ele-
ment. An appropriate detection event following the in-
terference “heralds” the entanglement of the parent
atomic ions. Such a coupling is inherently probabilistic,
limited in practice by finite photon detector efficiencies,
optical losses, and inefficiencies in photon generation
and collection. These losses and inefficiencies are char-
acterized by the single parameter p, the success prob-
ability of linking or entangling the two ions.

We denote a type-I coupling as that involving a single
photon between two ions and a type-II coupling involv-
ing two photons, one from each ion �Duan et al., 2004�.
In a type-I link, the photon interference is between two
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possible paths of a single photon, and the differential
optical phase of the two paths is imprinted onto the two-
ion entangled state �Cabrillo et al., 1999�. A type-I link
thus requires high mechanical stability of all optical
paths to much better than an optical wavelength and
also requires the ions to be confined sufficiently strong
so that neither ion recoils in the absorption or emission
process. However, the type-I photonic link offers the ad-
vantage of higher success probabilities since just a single
photon is emitted and collected by the ion pair. Type-I
interference between two ions has been observed be-
tween two ions held in the same trap �Eichmann et al.,
1993; DeVoe and Brewer, 1996�. Type-II links have the
advantage of being less sensitive to mechanical vibra-
tions and alignment, and because ion or photon en-
tanglement experiments primarily used this method, we
limit the discussion in this Colloquium to such two-
photon links between ions.

We concentrate on the 171Yb+ atomic system �Balzer
et al., 2006; Olmschenk et al., 2007�, following ion or
photon experiments, but there are other satisfactory
atomic ion candidates for this purpose. Figure 2 shows a
reduced energy-level structure of 171Yb+, highlighting
the 2S1/2 ground-state qubit in the �F=0, mF=0� and
�F=1, mF=1� hyperfine levels, denoted by |0� and |1�,
respectively, and separated in frequency by a hyperfine
splitting of 12.643 GHz. Single qubit rotations can be
accomplished with either resonant microwaves at this
frequency or through optically stimulated Raman tran-
sitions through an excited 2P state. Measurement of the
171Yb+ qubit is accomplished through standard state-
dependent fluorescence techniques �Blatt and Zoller,

1988� with effective qubit detection efficiencies greater
than 98%.

A. Atom-photon entanglement

The simplest quantum link between trapped ion and
photonic qubits follows from a resonant interaction be-
tween the ion and the photon �Blinov et al., 2004;
Moehring et al., 2004�. In Fig. 2, an ultrafast laser drives
the 2S1/2→ 2P1/2 electronic transition near 369.53 nm.
When the bandwidth of the laser pulse is large enough,
both �0�→ �0�� and �1�→ �1�� transitions are driven simul-
taneously, where �0�� and �1�� refer to the 2P1/2 �F�
=1, m�F=0� and �F�=0, mF� =0� excited states, respec-
tively. Given the angular-momentum selection rules and
a laser that is linearly polarized along the quantization
axis to drive �m=0 transitions only, the qubit is mapped
from the ground state to the excited state, as shown in
Fig. 2�a�. Following spontaneous emission �natural life-
time of ��8 ns for the 2P1/2 states� and conditioned
upon the photon having been collected and successfully
passed through a polarizing filter that rejects �± polar-
izations, an ion initially prepared in the state ��0�+��1�
evolves to the postselected entangled state ��0��	blue�
+��1��	red�, as shown in Fig. 2�b�. Here the photonic qu-
bit is stored in its frequency, with �	blue� and �	red� denot-
ing the frequency-resolved states of the single photon
�Madsen et al., 2006�. �In the 171Yb+ ion, 	blue−	red
=14.7 GHz, while the bandwidth of either color photon
is given by the excited-state linewidth �=1/�
= �2
�20 MHz; so these photon frequencies are well re-
solved.�

B. Two-photon interference

The central effect that will allow the ion qubits to be
linked through photons is the phenomenon of two-
photon quantum interference. When two photons inter-
act on a beam splitter �BS�, there are four possible out-
comes, with each photon being either reflected or
transmitted, as shown in Fig. 3. When the photons are
identical in polarization and color, the outcomes of the
photons emerging along different paths of a 50/50 BS
will interfere destructively �Figs. 3�d� and 3�e��.

This two-photon interference effect can also be seen
by considering the unitary operation of the BS on the
photons in the two modes a and b depicted in Fig. 3.
Given n and m photons in respective modes a and b
before the BS, the action of the BS is identical to rota-
tions within an effective J=N /2 angular-momentum sys-
tem, where N=n+m. Formally, the two-mode input

state �n�a�m�b evolves to �n�a�m�b→e−i�Ĵy�n�a�m�b, where
the rotation angle � is 
 times the reflectivity R of the

lossless BS and Ĵy=−i�â†b̂− âb̂†� /2 �Yurke et al., 1986�.
The photon annihilation and creation operators, â and

â† for mode a and b̂ and b̂† for mode b, follow the usual

bosonic commutation relations �â , â†�= �b̂ , b̂†�=1. For

FIG. 2. �Color online� Reduced energy-level diagram of
171Yb+, showing how photons are generated and entangled
with internal ion qubits denoted by |0� and |1�. �a� Due to the
atomic selection rules, an ultrafast 
-polarized laser pulse
drives |0� to �0�� and |1� to �1��. The pulse bandwidth is large
enough to simultaneously drive both transitions with near-unit
excitation probability. �b� After excitation, the ion spontane-
ously decays back to 2S1/2 and emits a single photon at
369.53 nm. If we consider only 
-polarized photons, then the
frequency of the emitted photon is entangled with the internal
electronic state of the atom, with the separation of the differ-
ent frequency modes equal to the sum of the 2S1/2 and 2P1/2
hyperfine splittings �	blue−	red=14.7 GHz�. Polarizing beam
splitters �PBS� are used to filter out the �-polarized light.
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one photon initially in both modes �N=2�, we find that

�1�a�1�b →
1
	2

sin ��2�a�0�b + cos ��1�a�1�b

−
1
	2

sin ��0�a�2�b, �1�

and for a 50/50 BS ��=
 /2�, the �1�a�1�b output state
vanishes.

Two-photon quantum interference has been observed
in nonlinear down-conversion of photons �Hong et al.,
1987; Shih and Alley, 1988; Kaltenbaek et al., 2006�,
quantum dots �Santori et al., 2002�, single atoms �Legero
et al., 2004; Beugnon et al., 2006�, atomic ensembles �Fe-
linto et al., 2006; Thompson et al., 2006; Chaneliere et al.,
2007�, and trapped ions �Maunz et al., 2007; Gerber et
al., 2009�.

In the 171Yb+ system, two-photon quantum interfer-
ence is observed by simultaneously exciting two trapped
171Yb+ ions, combining the two emitted photons on the
beam splitter, and detecting the photons with a photo-
multiplier tube �PMT� at each of the two output ports of
the beam splitter. The joint probability of detection for
identical photons is measured by placing matched polar-

izers in each beam path, while detection of distinguish-
able photons is evaluated by including the � /2 wave-
plate in one of the two input paths to the beam splitter.
As shown above, for identical photons we expect no de-
tections at time delay td=0, while for distinguishable
photons we expect a probability of joint detection half as
large as that from adjacent excitations from the laser-
pulse train. The data shown in Fig. 4 demonstrate this
quantum two-photon interference effect. In the mea-
surement of parallel polarized photons, the residual
counts at time delay td=0 result from both dark counts
on the PMTs and imperfect spatial mode overlap of the
photons on the beam splitter. The data shown in Fig. 4
correspond to an interferometer contrast of approxi-
mately 95% �Maunz et al., 2007�. The spatial filtering
afforded by coupling the spontaneously emitted photons
into single-mode fibers is essential to achieving such lev-
els of two-photon interference.

C. Ion-ion entanglement

Two ions become entangled by coupling the two pho-
tons on a beam splitter and measuring an appropriate
coincident event on detectors behind the beam splitter,
as shown in Fig. 5 �Moehring, Maunz, et al., 2007; Mat-
sukevich et al., 2008; Maunz et al., 2009; Olmschenk et
al., 2009�. For two independent ions A and B, initially
prepared in unique qubit states ��0�A+��1�B and ��0�A
+
�1�B, synchronized laser pulses can simultaneously
promote both ions to their excited states, and given that
a single photon is emitted from each ion, collected into a
single spatial mode, and passed through polarizing fil-
ters, the postselected state of this four-qubit system is

���AB = ���0�A�	blue�A + ��1�A�	red�A� � ���0�B�	blue�B

+ 
�1�B�	red�B� . �2�

+

+a

b

+

a

b

+|1,1>(d)
-

-|1,1>(e)

+

+a

b

+|0,2>(b) +-

a

b

-|2,0>(c)

a

b

b

a

(a)

BS

FIG. 3. Two photon interference at a beam splitter. �a� Spatial
modes a and b are straight paths through the beam splitter
�BS�, and the beam splitter couples these two modes. �b�–�e�
The four possible output modes of two photons entering a
beam splitter from different ports. A negative phase is ac-
quired only upon reflection from low to high index of
refraction—mode a in �c� and �e�.

FIG. 4. Normalized experimental two-photon second-order
correlation function for identical �parallel polarized� photons
�diamonds� and distinguishable �perpendicularly polarized�
photons �circles� �Maunz et al., 2007�. As expected, two identi-
cal photons incident on the beam splitter always exit by the
same port, resulting in suppression of joint detections at time
delay td=0.
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As described above, when the two spatial modes A
and B of the photons are matched on a 50/50 beam
splitter, the components of the above state with photons
of identical color result in the photons emerging from
the beam splitter �Hong et al., 1987; Shih and Alley,
1988�, and it is only the case of different color photons
that result in photons emerging the beam splitter along
different spatial modes. Thus when photons are detected
in coincidence on the two detectors, the ions are pro-
jected onto the general entangled state �Braunstein and
Mann, 1995�,

���AB = �
�0�A�1�B − ���1�A�0�B. �3�

We first assess the generation of the maximally en-
tangled antisymmetric Bell state ��0�A�1�B− �1�A�0�B� by

setting �=�=�=
 and performing quantum tomography
on the resulting state. The resulting density matrix �
shown in Fig. 6 is obtained using a maximum-likelihood
method from an overcomplete set of measurements of
the two spins in various bases �James et al., 2001�. The
entanglement of the resultant state � can be character-
ized with either the entanglement fidelity or the en-
tanglement of formation �or equivalently the concur-
rence� �Wootters, 1998�. The entanglement fidelity is
defined as the overlap with a maximally entangled state
��e�= ��0�A�1�B− �1�A�0�B� /	2 as F= 
�e����e�. A fidelity
F�1/2 shows that the state � is entangled �Sackett et al.,
2000�. Given the measured quantum state �, the concur-
rence C and the entanglement of formation EF can also
be calculated �Wootters, 1998�, with C�0 or EF�0 indi-
cating entanglement. From the measured data, we calcu-
late an entanglement fidelity of F=0.87�2�, a concur-
rence of C=0.77�4�, and an entanglement of formation
EF=0.69�6� �52�.

In general, the overall action of the photon heralding
process resulting in the evolution from Eqs. �2� to �3� is a
probabilistic quantum gate where the input state ��in� is
transformed to

��out� � Z1�I − Z1Z2���in� , �4�

with success probability p, where Zi is the Pauli Z op-
erator on ion i. This type of gate was recently demon-
strated with a fidelity of approximately 90% averaged
over a replete set of quantum states on the Bloch sphere
�Maunz et al., 2009�.

The above probabilistic gate can also be exploited to
teleport the state of one ion to the other, as shown in
Fig. 7. Here the gate is operated with �=
=1/	2, and
the state of ion A represented by the amplitudes � and �
is teleported to ion B by measuring ion A following a

FIG. 5. �Color online� Experimental setup for the heralded
entanglement and quantum gate operation between two ions.
Spontaneously emitted 
-polarized photons are coupled in a
single-mode fiber and directed to interfere on a 50/50 nonpo-
larizing BS. Coincident detection of two photons by photon-
counting photomultipliers �PMTs� announces the success of
the gate between the two ions. PBSs are polarizers used to
filter the photons so that only 
-polarized photons are de-
tected. The state of each ion is measured by state-dependent
fluorescence, detected by a PMT on the opposite side of the
vacuum chamber.

FIG. 6. �Color online� State tomography of the singlet entangled state of two ions �0��1�− �1��0�. The �a� real and �b� imaginary
elements of the reconstructed density matrix are shown. The density matrix was obtained with a maximum-likelihood method
from 601 events measured in nine different bases. From this density matrix we calculate an entangled state fidelity of F
=0.87�2�, a concurrence of C=0.77�4�, and an entanglement of formation EF=0.69�6�.
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 /2 rotation of its qubit. Based on this measurement, an
appropriate rotation is then applied to ion B, thus recov-
ering the original qubit on ion B. This probabilistic tele-
portation protocol was implemented on a pair of 171Yb+

ions separated by �1 m, with an averaged fidelity of
90% �Olmschenk et al., 2009�. Figure 8 shows the tomo-
graphically measured density matrices of six teleported
states distributed on the Bloch sphere, with the input
states listed below each entry.

D. Errors and success probabilities

The observed remote ion-ion entanglement and tele-
portation fidelities are consistent with known experi-
mental errors. The primary contributions to the error
are imperfect state detection �3%�, spatial mode mis-
match on the beam splitter �6%�, and detection of
�-polarized light due to the finite solid angle of collec-
tion and misalignment of the magnetic field ��2%�.
Other sources, including imperfect state preparation,
pulsed excitation to the wrong atomic state, dark counts
of the PMT leading to false coincidence events, and mul-
tiple excitation due to pulsed laser light leakage, are
each estimated to contribute to the overall error by
much less than 1%. Micromotion at the rf-drive fre-
quency of the ion trap, which alters the spectrum of the
emitted photons and can degrade the quantum interfer-

FIG. 7. Space-time schematic of the teleportation protocol.
Each ion is first initialized to |0� by optical pumping. At time t1
the state to be teleported ��0�+��1� is written to ion A and the
known state �0�+ �1� is written to ion B through appropriate
rotation operators R�� ,�� on the Bloch sphere, with R�� ,0�
�Ry��� and R�� ,
 /2��Rx���. At time t2, synchronized laser
pulses excite each atom, and the frequencies of the emitted
photons are entangled with the respective ion qubits following
Fig. 2. The two photons interfere at a beam splitter, and coin-
cident detection of the emerging photons at time t3 heralds the
production of the entangled state of Eq. �3� with 
=�=1/	2.
Following successful entanglement, ion A is coherently rotated
at time t4 through the operator Ry�
 /2� and measured in the
z-basis at time t5. Finally, depending on the measurement re-
sult, rotation operators conditioned upon the measurement re-
sult are applied to ion B at time t6 to complete the teleporta-
tion of the original quantum state from A to B.

FIG. 8. Tomography of the teleported quantum states. The reconstructed density matrices � for the six unbiased basis states
teleported from ion A to ion B: �a� ���ideal=1/	2��0�+ �1�� teleported with fidelity F=0.91�3�, �b� ���ideal=1/	2��0�− �1�� teleported
with fidelity F=0.88�4�, �c� ���ideal=1/	2��0�+ i�1�� teleported with fidelity F=0.92�4�, �d� ���ideal=1/	2��0�− i�1�� teleported with
fidelity F=0.91�4�, �e� ���ideal= �0� teleported with fidelity F=0.93�4�, and �f� ���ideal= �1� teleported with fidelity F=0.88�4�. These
measurements yield an average teleportation fidelity F=0.90�2�. The data shown comprise a total of 1285 events in 253 h.

1215L.-M. Duan and C. Monroe: Colloquium: Quantum networks with trapped ions

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010



ence, is expected to contribute to the overall error by
less than 1%.

This quantum linkage is a heralded probabilistic pro-
cess. The net probability p for the success of the gate
operation in the experiments is

p = 1
4 �p
�TfiberToptics��c�2 � 2.2 � 10−8, �5�

where p
=0.5 is the fraction of photons with the correct
polarization �half are filtered out as being produced by �
decays�, �=0.15 is the quantum efficiency of each PMT,
Tfiber=0.2 is the coupling and transmission of each pho-
ton through the single-mode optical fiber, Toptics=0.95 is
the transmission of each photon through the other opti-
cal components, �=1−0.005=0.995, with 0.005 the
branching ratio from the 2P1/2 state to the 2D3/2 level,
and �c=0.02 is the collection efficiency of the photons,
given by the solid angle of the collection optics.

In the above experiments, the attempt rate was lim-
ited to about 75 kHz due to the time required for the
initial microwave pulse for state preparation. This re-
sulted in about one successful gate operation every
12 min. However, the expression for the success prob-
ability p reveals multiple ways to substantially increase
the success rate. The most dramatic improvement would
be to increase the effective solid angle of collection,
which, for instance, could be accomplished with high nu-
merical aperture optics or by surrounding each ion with
an optical cavity. In the latter case, the collection effi-
ciency can be as high as �c�2C / �1+2C� �Luo et al.,
2009�, where C=g2 /�� is the single-atom cooperativity
parameter; g is the ion-cavity coupling rate, � is the cav-
ity decay rate, and � is the ion spontaneous emission
rate. For a cavity in the intermediate coupling region
with C�1, the collection efficiency can be improved to
�c�67%. In addition, photons emerging from a cavity
mode will efficiently couple to a single-mode fiber �cou-
pling efficiencies of Tfiber�90% have been achieved in
many experiments�. The use of such a cavity could thus
increase the gate success probability by a factor of �105

over current experiments. The detection efficiency � can
be improved substantially with specialized solid-state or
superconducting photon detectors �Miller et al., 2003�,
although speed and dark-count parameters must also be
considered. Finally, the prefactor 1/4 appearing in the
success probability of Eq. �5� can be improved to 1/2 by
resolving the frequency components behind each arm of
the beam splitter and detecting appropriate coincident
events with four PMTs �Braunstein and Mann, 1995;
Michler et al., 1996�. Considering all of these improve-
ments, it may be possible in the future to reach gate
success probabilities of p�10−2. Such experimental im-
provements would dramatically impact the scalability of
probabilistic ion or photon networks.

III. THEORETICAL SCALING TOWARD LARGE-SCALE
QUANTUM NETWORKS

From Sec. II, we see that a number of basic steps for
trapped ion photonic quantum networks have been

demonstrated in small systems consisting of a few qubits.
In this section, we review several methods to scale the
current experimental system toward realization of large
quantum networks. In Sec. III.A, we show how to real-
ize a quantum repeater network based on probabilistic
entanglement between remote ions. Second, we show
that a telequantum-computational network can be real-
ized in an efficient fashion exclusively with probabilistic
gate operations even when the gate success probability
is well below unity. Third, we review a hybrid approach
toward large-scale quantum networks especially suited
to trapped ion qubits, where both local deterministic
gates and remote probabilistic entanglement are used.
This hybrid approach exhibits a more favorable scaling
law and thus allows even smaller gate success probabili-
ties �p�1�. Given the availability of local deterministic
gates for the trapped ions through the Coulomb interac-
tion, this hybrid approach may offer a more practical
method for building future networks of large sizes.

A. An extension of the DLCZ scheme for the quantum repeater
network with trapped ions

The DLCZ scheme for the implementation of a quan-
tum repeater network was initially designed with atomic
ensembles as the quantum nodes �Duan et al., 2001�.
There are two key features of this scheme: first is a par-
ticular interaction configuration between light and at-
oms that entangles a photon with a collective mode in
the atomic ensemble. This involves a collective enhance-
ment of the interaction that substantially increases the
signal-to-noise ratio but because this is unique to a par-
ticle ensemble system it does not carry over to single-
particle nodes. The second feature of the DLCZ scheme
is its inherent insensitivity to the dominant source of
experimental noise in practical experimental systems. As
opposed to the original quantum repeater protocol
�Briegel et al., 1998�, where every source of noise must
have a level below an error threshold of approximately a
few percent, the DLCZ scheme can tolerate very high
levels of photon loss. �However, other sources of noise
such as detector dark counts must still be below more
strict error thresholds.� In atomic ensembles, photon loss
occurs with a probability typically greater than 50%, yet
can still be efficiently scaled to large communication dis-
tances.

We can readily extend the DLCZ scheme for a quan-
tum repeater network to single particles �single trapped
ions here� as the quantum nodes while maintaining the
insensitivity to the dominant source of noise. As shown
in Sec. II, one can generate entanglement between re-
mote ions, with a success probability p, encompassing all
sources of photon losses, from finite collection solid
angle, fiber coupling, absorption, and finite detector ef-
ficiencies. Using the same light-atom interaction inter-
face, one can also connect two segments of entangle-
ment to double the communication distance as shown in
Fig. 9. The success probability for the entanglement con-
nection, denoted by pc, can be somewhat higher than p
as the entanglement connection operation applies to two
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local ions and can thus avoid photon loss in the commu-
nication channel. For each step of the connection, the
communication distance L is doubled, so the recursion
relation for L is Li=2Li−1 for the ith step. The connec-
tion succeeds with a probability pc, so we need in aver-
age to repeat the connection 1/pc times for a successful
event. The recursion relation for the preparation time is
given by Ti��1/pc�Ti−1. Combining these two recursion
relations, we obtain the scaling

T � T0�L/L0�log2�1/pc�, �6�

where T0� ta /p is the preparation time of entanglement
over an initial segment of length L0, with ta denoting the
time for each entangling attempt. With ensembles, the
scaling is instead given by

T � T0�L/L0��1/2�log2�L/L0�+log2�1/pc−1�+5/2

�Duan et al., 2001�. The additional factor
�1/2�log2�L /L0�+5/2 in the exponent arises from the
postselection in each step necessary to eliminate double
excitations in the ensemble. With single ions, however,
there are no double excitations and thus no postselec-
tion �although it is still probabilistic�. This is the key
advantage of using single ions as repeater nodes. The
price for this more favorable scaling is that the connec-
tion efficiency pc is typically much smaller for single ions
compared with atomic ensembles because there is no
collective enhancement effect for single particles. Al-
though the scaling given above is a polynomial in both
the distance L and the inverse of the success probability
1/pc, the success probability pc should not be too low to
have a practical scaling exponent �a value of a few per-
cent appears tolerable�. Such a success probability will
require special optical elements such as an optical cavity
or high numerical aperture optics, as discussed in Sec.
II.D. Alternatively, one can apply local deterministic
gates to adjacent ions to connect different segments of
ion entanglement as covered below.

B. Quantum computational network with exclusively
probabilistic quantum gates

As discussed in Sec. II, with an appropriate laser-ion
interaction configuration, we can realize probabilistic
quantum gates on remote ions �Duan et al., 2006; Maunz
et al., 2009�. As a gate keeps track of information of the

input states, it is more powerful than a probabilistic en-
tangling operation. With entangling operations, we can
establish entangled states over long distance associated
with the quantum repeater network; with probabilistic
gate operations, we can realize a fully functional quan-
tum computation network, which allows generation of
any entangled states distributed over many remote par-
ties. Similar to the probabilistic entangling operations,
the probabilistic gates are inherently robust to noise in
the sense that the dominant noise in the experimental
system represented by the photon loss only contributes
to a finite probability of the gate failure and does not
degrade the gate fidelity when it succeeds. Quantum
computation with probabilistic gates thus tolerates this
dominant noise at a much higher level. One can show
that scalable quantum computation can be built up
solely based on the probabilistic gates. Compared with
the deterministic gates, the additional overhead �such as
the number of qubit manipulations� for quantum com-
puting with probabilistic gates scales only polynomially
with both the size of the computation and the inverse of
the gate success probability �Duan and Raussendorf,
2005; Lim et al., 2006�.

Here we explain how to build a quantum computa-
tional network with the probabilistic measurement gate,
following the approach of Duan and Raussendorf �2005�
and Duan et al. �2006�. The probabilistic measurement
gates on remote ions, reviewed in Sec. IV and realized
recently in experiments �Maunz et al., 2009; Olmschenk
et al., 2009�, are based on the interference of photonic
qubits stored in the frequency �color� of the photons.
There are other proposals for the implementation of
probabilistic gates using atomic qubits �Barrett and Kok,
2005; Duan et al., 2005; Lim et al., 2006�. However, the
probabilistic measurement gate of Duan et al. �2006� has
several advantages in terms of experimental require-
ments:

• Optical frequency qubits are used to connect and en-
tangle matter qubits at distant locations. The two
states comprising this optical qubit have the same
polarization but differ in frequency by the atomic
hyperfine splitting �typically in the microwave re-
gion�. These closely spaced frequency components
have basically zero dispersion in typical optical
paths; thus this optical qubit is highly insensitive to
phase jitter inherent in optical interferometers.

• The gate scheme does not require interferometric
stabilization of the optical path lengths to near or
within an optical wavelength.

• The motion of the atomic qubits need not be con-
fined to within an optical wavelength �the Lamb-
Dicke regime�.

As outlined in Sec. II, the probabilistic measurement
gate projects the ion states to the eigenspace of the op-
erator Z1Z2, where Zi represents the Paul phase flip op-
erator acting on the qubit states of the ith ion �Eq. �4��.

Various sources of noise in the experimental system
lead to a finite �and typically small� gate success prob-
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FIG. 9. �Color online� Illustration of construction of a quan-
tum repeater network through probabilistic entangling opera-
tions.
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ability p. The single-bit operations can be done for
single ions with a very high precision, so we neglect their
error in the following. The probabilistic measurement
gates, together with single-bit operations, are then
enough for efficient construction of universal quantum
computation. To prove this result, it is most convenient
to use the cluster-state approach to quantum computa-
tion �Raussendorf and Briegel, 2001�. In the cluster-state
approach, universal quantum computation can be real-
ized through a combination of single-bit operations to-
gether with the preparation of a particular many-body
entangled state, which is typically chosen as the two-
dimensional �2D� cluster state. In the ion system, as we
get single-bit operations almost for free, our task re-
duces to how to efficiently construct a large-scale 2D
cluster state with the probabilistic measurement gates.
The construction of the 2D cluster state in the following
is divided into two steps: first we show how to efficiently
prepare a one-dimensional �1D� cluster state from the
probabilistic measurement gates using the divide and
conquer method and then we give a construction to ef-
ficiently generate 2D cluster states from the 1D chains.

With respect to a given lattice geometry, the cluster
state is defined as coeigenstates of all operators Ai
=Xi�jZj, where i denotes an arbitrary lattice site and j
runs over all the nearest neighbors of the site i �Briegel
and Raussendorf, 2001�. Xi and Zj denote the Pauli spin
and the phase flip operators on the qubits at the sites i , j,
respectively. One can easily check that all operators Ai
commute with each other, and they are referred to as the
stabilizer operators. The properties of the cluster state
can be conveniently explained by studying the corre-
sponding set of stabilizer operators. In our construction
of lattice cluster states with probabilistic ZZ measure-
ment gates, we make use of the following properties of
the ZZ gate on the cluster states. �1� If one starts with
two qubits �atoms� in a product state given by the co-
eigenstate of X1 and X2 �it is thus also an eigenstate of
X1X2�, after a ZZ measurement, the state is projected to
an eigenstate of Z1Z2. As the measurement operator
Z1Z2 commutes with X1X2, the final state is still an
eigenstate of X1X2 �but not of X1 and X2 anymore�. The
state after measurement is thus a coeigenstate of the
stabilizer operators Z1Z2 and X1X2, which is equivalent
to the two-qubit cluster state under a single-bit rotation
that exchanges Z2 and X2. �2� Assume that one has pre-
pared two 1D cluster chains, each of n qubits. The sta-
bilizer operators for the boundary qubits n and n+1 of
the two chains are denoted by XnZn−1 and Xn+1Zn+2,
respectively. Similar to the argument in property �1�, a
ZZ measurement of these two boundary qubits gener-
ates the new stabilizer operators ZnZn+1 and
XnXn+1Zn−1Zn+2 �the initial stabilizer operators XnZn−1
and Xn+1Zn+2 are destroyed by the measurement, but
their product XnXn+1Zn−1Zn+2 is preserved as it com-
mutes with the measurement operator ZnZn+1�. This op-
eration actually connects the two chains into a cluster
state of 2n−1 qubits. �The central qubits n and n+1 to-
gether represent one logic qubit with the encoded XL

=XnXn+1 and ZL=Zn or Zn+1. One can measure the
single-bit operator Xn+1 to reduce the encoded operators
XL and ZL to Xn and Zn.� �3� If we destroy the state of
an end qubit of an n-qubit cluster chain, for instance,
through an unsuccessful attempt of the ZZ measure-
ment, we can remove this bad qubit by performing a Z
measurement on its neighboring qubit and recover a
cluster state of n−2 qubits. �4� We can shrink a cluster
state by performing an even number of X measurements
on the connecting qubits. The last two properties can be
explained in a similar way by looking at the transforma-
tion of the set of stabilizer operators through the mea-
surement, and the detailed explanation can be found in
Hein et al. �2006�. The above properties of the cluster
states are shown in Fig. 10.

If we have generated two sufficiently long cluster
chains each of n0 qubits, we can try to connect them
through a probabilistic ZZ gate. If this attempt fails,
through property �2�, we can recover two �n0−2�-qubit
cluster chains through a Z measurement and try to con-
nect them again. As one continues with this process, the
average number of qubits in the connected chain is
then given by n1=
i=0

n0/2�2n0−1−4i�p�1−p�i�2n0−1
−4�1−p� /p, where the last approximation is valid when
e−n0p/2�1. As a result, the average chain length increases
if n0�nc�4�1−p� /p+1. We can iterate these connec-
tions to see how the computational overhead scales with
the qubit number n. We measure the computational
overhead in terms of the total computation time and the
total number of attempts for the ZZ gates. For the rth
�r�1� round of successful connection, the chain length
nr, the total preparation time Tr, and the total number of
attempts Mr scale in a manner that can be obtained from
the recursion relations nr�2nr−1−nc, Tr�Tr−1+ ta /p,
and Mr�2Mr−1+1/p, respectively. In writing the recur-
sion relation for Tr, we have assumed that two cluster
chains for each connection are prepared in parallel, and
we neglect the time for single-bit operations �ta denotes
the time for each attempt of the ZZ gate�. From the
above recursion relations, we conclude that if we can
prepare cluster chains of n0 �n0�nc� qubits in time T0
with M0 attempts of the probabilistic gates, for a large
cluster state, the preparation time T and the number of
attempts M scale with the chain length n as T�n��T0

ZZ

FIG. 10. Illustration of the three properties of the cluster
states which are important for our construction of such states
with the probabilistic entangling gates: �a� extend cluster states
with ZZ measurement gates, �b� recover cluster states by re-
moving bad qubits, and �c� shrink cluster states for more com-
plicated links �see Duan and Raussendorf �2005��.
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+ �ta /p�log2��n−nc� / �n0−nc�� and M�n���M0+1/p��n
−nc� / �n0−nc�−1/p.

In the above we have shown that if one can prepare
cluster chains longer than some critical length nc, one
can generate large-scale 1D cluster states very effi-
ciently. The problem then reduces to how to efficiently
prepare cluster chains up to the critical length nc. If one
wants to prepare an n-qubit cluster chain, we propose to
use a repeater protocol which divides the task into m
=log2 n steps: for the ith �i=1,2, . . . ,m� step, we attempt
to build a 2i-bit cluster state by connecting two 2i−1-bit
cluster chains through a probabilistic ZZ gate. If such an
attempt fails, we discard all qubits and restart from the
beginning. For the ith step, the recursion relations for
the preparation time Ti and the number of attempts Mi
are given by Ti��1/p��Ti−1+ ta� and Mi��1/p��2Mi−1
+1�, which, together with T1� ta /p and M1�1/p, give
the scaling rules T�n�� ta�1/p�log2 n and M�n�
��2/p�log2 n /2. The cost is more significant, but it is still
a polynomial function of n. The scaling in this repeater
protocol compares favorably with the exponential scal-
ing T�n��M�n���1/p�n−1 in the direct protocol, where
to construct an n-qubit cluster chain one requires the n
−1 ZZ gates to succeed simultaneously.

To generate a cluster chain of a length n�nc, we com-
bine the repeater protocol and the connect-and-repair
protocol to get more efficient scaling. First, we use the
repeater protocol to generate n0-qubit chains with n0
slightly larger than nc. For instance, we can take n0=nc
+1, which is a close-to-optimal choice. Then, it is
straightforward to use the connect-and-repair protocol
to further increase the length of the cluster starting from
the n0-qubit chains. Combining the scalings for these
two protocols, we get the overall scaling rules for T and
M when n�nc,

T�n� � ta�1/p�log2�nc+1� + �ta/p�log2�n − nc� , �7�

M�n� � �2/p�log2�nc+1��n − nc�/2. �8�

We have shown that for any success probability p of
the probabilistic entangling gate, 1D cluster states of ar-
bitrary length can be created with efficient scaling. For
universal quantum computation, however, such 1D clus-
ter states are not sufficient. They need to be first con-
nected and transformed into 2D cluster states �for in-
stance, with a square lattice geometry�. It is not obvious
that such a connection can be done efficiently. First, in
the connect-and-repair protocol, when an attempt fails,
we need to remove the end qubits and all of their neigh-
bors. This means that in a 2D geometry the lattice
shrinks much faster to an irregular shape in the events of
failure. Furthermore, a more serious obstacle is that we
need to connect many more boundary qubits if we want
to join two 2D cluster states. For instance, for a square
lattice of n qubits, the number of boundary qubits scales
as 	n �which is distinct from a 1D chain�. If we need to
connect all the corresponding boundary qubits of the
two parts, the overall success probability is exponen-
tially small.

To overcome this problem, we introduce a method
which enables efficient connection by attaching a long
leg �a 1D cluster chain� to each boundary qubit of the
2D lattice. The protocol is divided into the following
steps. First, we try to build a + shape cluster state by
probabilistically connecting two cluster chains each of
length 2nl+1 �the value of nl is specified below�. This can
be done through the probabilistic ZZ gate together with
a simple Hadamard gate H and an X measurement, as
shown in Fig. 11�a� and explained in its caption. With on
average 1/p repetitions, we get a + shape state with the
length of each of the four legs given by nl. We use the +
shape state as the basic building blocks of large-scale 2D
cluster states. In the + shape state, we have attached
four long legs to the center qubit. The leg qubits serve as
ancilla to generate near-deterministic connection from
the probabilistic ZZ gates. The key idea here is that if
we want to connect two center qubits, we always start
the connection along the end qubits of one of the legs
�see Fig. 11�. If such an attempt fails, we can delete two
end qubits and try the connection again along the same
legs. If the leg is sufficiently long, we can almost cer-
tainly succeed before we reach �destroy� the center qu-
bits. When we succeed and if there are still redundant
leg qubits between the two center ones, we can delete
the intermediate leg qubits by performing simple single-
bit X measurements on all of them �see Figs. 10�c� and
11 for the third property of the cluster state�. With such
a procedure, we can continuously connect the center qu-
bits and form any complex lattice geometry �see the il-
lustration for construction of the square lattice state in
Figs. 11�b� and 11�c��. What is important here is that
after each time of connection of the center qubits, in the
formed new shape, we still have the same length of an-

ZZ
X

ZZ

ZZ

(a)

(b)

(c)

FIG. 11. Illustration of the steps for construction of the two-
dimensional square lattice cluster states from a set of cluster
chains. �a� Construction of the basic + shape states from cluster
chains by applying a ZZ gate to connect the two middle qubits
and an X measurement on one middle qubit to remove it. �b�
and �c� Construction of the square lattice cluster state from the
+ shape states through probabilistic ZZ measurement gates
along the legs and X measurements to remove the remaining
redundant qubits. See Duan and Raussendorf �2005� for a simi-
lar construction with the controlled phase flip gates.
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cillary legs on all the boundary qubits, which enables the
succeeding near-deterministic connection of these new
shapes.

Now we investigate for the 2D case how the compu-
tational overhead scales with the size of the cluster state.
If the ancillary legs have length nl, for each connection
of two center qubits, we can try at most nl /2 times of the
probabilistic ZZ gates, and the overall success probabil-
ity is given by pc=1− �1−p�nl/2. If we want to build a
square lattice cluster state of N qubits, we need about
2N times of connections of the center qubits �there are
about 2N edges in an N-vertex square lattice�. The prob-
ability for all these connections to be successful is given
by pc

2N. We require that this overall success probability is
sufficiently large with pc

2N�1−�, where � is a small num-
ber characterizing the overall failure probability. From
that requirement, we find nl��2/p�ln�2N /��. To con-
struct a square lattice cluster state of N qubits, we need
to consume N + shape states, and each of the latter re-
quires on average 2/p cluster chains with a length of
2nl+1 qubits. So we need in total 2N /p cluster chains,
each of 2nl+1 bits, which can be prepared in parallel
with �2N /p�M�2nl+1� ZZ attempts within a time period
T�2nl+1� �see Eqs. �7� and �8� for expressions of M�n�
and T�n��. This gives the resources for preparation of all
the basic building blocks �the chains�. Then we need to
connect these blocks to form the square lattice. We as-
sume that the connections of all the building blocks are
done in parallel. The whole connection takes on average
2N /p ZZ attempts and consumes a time at most
ta /p ln�2N /��. Summarizing these results, the temporal
and operational resources for preparation of an N-bit
square lattice cluster state are given by

T�N� � ta�1/p�log2�4/p−2� +
ta

p
ln�2N/��

+
ta

p
log2� 4

p
�ln�2N/�� − 1�� , �9�

M�N� � �2/p�2+log2�4/p−2�N�ln�2N/�� − 1� + 2N/p . �10�

In the 2D case, the temporal and the operational over-
head still shows efficient scaling with the qubit number
N, logarithmically for T�N� and N ln�N� for M�N�. Their
scalings with 1/p are almost the same as in the 1D case
except for an additional factor of 1/p2 for M�N�.
Through some straightforward variations in the above
method, it is also possible to efficiently prepare any
complicated graph state using probabilistic ZZ gates.

Values of T�N� / ta and M�N� are listed in Table I un-
der several different success probabilities p with the qu-
bit number n=109 and the overall failure probability �
�10−4. If we take the current experimental value of p
�2�10−8, we get ridiculously large numbers for T�N� / ta
and M�N�. Although their scaling with N is still polyno-
mial, the large prefactor �1/p�log2�4/p−2� makes the re-
quirements totally impractical. With near-future im-
provement of the experimental technology, in particular,

with a cavity in the intermediate coupling region to in-
crease the photon collection and coupling efficiency, the
success probability p could be pushed to the region of
10−4–10−2. With p�10−2, one can prepare cluster states
of tens of qubits with T�N� / ta�108 �which is about the
preparation time in current experiments�, but for n
=109, the required time T�n� / ta�1017 is still too large.
Desired values of p would be 5% or above. With such a
success probability, one can prepare arbitrarily large
cluster states with the total time bounded by T�N� / ta
�108. Achieving such values of p requires significant im-
provement in all efficiencies for the photon collection,
transmission, and detection. Different theoretical
schemes for the probabilistic gates, for instance, using
the type-I photon link instead of the type-II link �Duan
et al., 2004�, can also help to increase the success prob-
ability.

C. A hybrid quantum network through local deterministic
gates and remote probabilistic entanglement

In Secs. III.A and III.B, we have shown that scalable
quantum communication or computation networks can
be realized in principle with probabilistic entangling
gates. The required resources scale polynomially with
the size of the network, and this cost is significant if the
gate success probability is too small. In this section, we
discuss an alternative approach to scalable quantum net-
works based on a combination of local deterministic
gates and remote probabilistic entanglement, following
the proposal of Duan et al. �2004�. This hybrid approach
requires the ability to perform local deterministic gates
on adjacent ions, whose fidelity must exceed appropriate
error-correction thresholds. For the trapped ion system,
given recent experimental advances �Benhelm et al.,
2008; Blatt and Wineland, 2008�, it appears possible to
meet such thresholds using local Coulomb gates. With
this additional capability, the scaling for large-scale
quantum networks becomes more efficient and realistic
for even very small probabilistic gate success rates.

The simplest version of a hybrid trapped ion network
consists of quantum registers, each with a pair of ions
that can be manipulated separately with laser beams. To
achieve sufficient individual addressing, the two ions in
each register could be spatially resolved with tightly fo-
cused laser beams �Nägerl et al., 1999�, spectrally re-
solved using different ion isotopes or species �Blinov et
al., 2002; Barrett et al., 2003�, or the ions could be spa-
tially separated in different trap regions where they can

TABLE I. List of the preparation time T�N� �in units of pulse
cycle ta� and the total number of trials M�N� at different suc-
cess probabilities p for generation of a 2D cluster state with
the number of qubits N=109 and the overall error probability
�=10−4.

p 2�10−8 10−4 10−2 5% 10%
T�N� / ta 10212 1061 1017 108 1.8�105

M�N� 10247 1085 1035 1024 1020
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be brought together for local Coulomb gates �Kielpinski
et al., 2002�. Within each pair, one ion �the logic ion�
encodes the quantum information and the second ion
�the ancilla� allows the coupling to another ion pair
through a probabilistic photonic entangling protocol.
This probabilistic entanglement, combined with the local
Coulomb gates within each pair, allows for an effective
quantum gate between the remote logical qubits.

The resulting remote operation is deterministic be-
cause the probabilistic entangling operations can be
done offline, and the failure of any individual entangling
attempt does not destroy the computational quantum
state carried by the logical ions. When the probabilistic
entanglement protocols are attempted simultaneously
between all registers, the offline waiting time scales only
logarithmically with the number of registers: Twait
�T0 ln�N�.

1. Hybrid quantum computational network

First, we show how to use this hybrid approach to
construct a scalable quantum computational network.
Figure 12 shows the schematic setup. Different ion pairs
can be in different traps that are separated with an arbi-
trary distance. Each qubit is represented by a pair of
ions, denoted as i and i� for the logic ion and the ancilla
ion, respectively. We need to perform deterministic
quantum gates between two arbitrary logic ions in dif-
ferent traps. For this purpose, we assume that each an-
cilla ion is connected to a single-photon detector, possi-
bly through an optical fiber. To entangle two ancilla ions,
say, i� and j�, we pump both to excited electronic states
with appropriate resonant laser beams. The resulting
spontaneously emitted photons from these two ions are
directed to single-photon detectors for a Bell-type col-
lective measurement. For particular measurement re-
sults, the two ancilla ions i� and j� will be projected into
a Bell state, which we denote as ���i�j�= ��01�+ �10�� /	2
�see Sec. III.C for the entangling protocol�. Each entan-
gling operation succeeds with a probability ps �the prob-
ability to register the appropriate result�, so we need to
repeat this operation on average 1/ps times for a final
successful confirmation of entanglement, with the total
preparation time about ta /ps, where again ta is the time

for each individual entangling attempt. The logic and
ancilla ions are individually resolved so that the proba-
bilistic entangling operation on the ancilla ions does not
influence the logic ions even if this entangling operation
fails.

With assistance of the Bell state ���i�j�, we can achieve
remote quantum controlled-NOT �CNOT� gates on the
logic ions i and j. We assume that quantum CNOT gates
can be realized on the local ions i , i� and j , j� in the same
pairs through the conventional Coulomb gate �Cirac and
Zoller, 1995; Monroe, 2002; Blatt and Wineland, 2008�.
These local CNOT gates are denoted by Cii� and Cjj�,
where the subscripts refer to the control and target ions.
We can achieve the remote CNOT gate Cij on the logic
ions i , j through a combination of the gates Cii�, Cjj� and
the Bell state ���i�j�. This can be seen by considering the
following identity:

Cii�Cjj�����ij¯ � ���i�j��

= �0 + �i�j� � Cij����ij¯� + �0 − �i�j� � ZiCij����ij¯�

+ �1 + �i�j� � XjCij����ij¯� + �1 − �i�j�

� �− ZiXj�Cij����ij¯� , �11�

where �± �j�= ��0�j�± �1�j�� /	2 and ���ij¯ denotes the com-
putational state for which the i , j ions may be entangled
with other logic ions. The single-qubit Pauli operators Zi
and Xj act on the corresponding ions i , j. The above
identity has been used in different contexts, in particular,
for discussion of the communication complexity of the
quantum CNOT gate �Sorensen and Molmer, 1998; Got-
tesman, 1999�. This identity shows that to perform a re-
mote CNOT gate Cij on the logic ions i , j, we can take the
following steps:

• Prepare the ancilla ion i� and j� into the electron
paramagnetic resonance state ���i�j� using a probabi-
listic entangling protocol. Repeat the protocol until it
succeeds.

• Apply the local motional CNOT gates Cii� and Cjj� on
the ions i , i� and j , j� within the same pairs.

• Measure the ancilla ion i� in the basis ��0�i� , �1�i�� and
the ancilla ion j� in the basis ��+�j� , �−�j��.

• Apply a single-bit rotation �I ,Zi ,Xj ,−ZiXj� on ion i
and/or j if we get the measurement results �0+ ,
0− ,1+ ,1− �, respectively.

The resulting remote quantum CNOT gate Cij is deter-
ministic despite that the seeding entanglement opera-
tions may have been established probabilistically. When
accompanied by simple local single-bit rotations, this hy-
brid computation model is therefore scalable, with no
fundamental limit to the number of ion-pair nodes. The
essential resources for this approach are two-qubit local
Coulomb gates and remote ion-ion probabilistic en-
tanglement, both of which have been achieved in the
laboratory.

D

D

BS

D1 D2

i 'i j 'j
CNOT

CNOT

Pump Pump

FIG. 12. �Color online� Schematic of a quantum computational
model based on a hybrid approach. The ancilla ions in differ-
ent traps are entangled through the probabilistic entangling
protocol. Deterministic gates on remote ions are constructed
from the local Coulomb gates and the probabilistic remote en-
tanglement.
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2. Hybrid quantum repeater network

With the same system, we can also realize a quantum
repeater network. Figure 13 shows schematically the
implementation of quantum repeaters with the paired-
ion setup. With the probabilistic entangling protocol, we
can generate entanglement between two nodes, say, i
and k, and also k� and j�, each with a communication
distance L0 which is comparable to the photon attenua-
tion length. The success probability for the preparation
of each segment of entanglement is given by p=pspa,
where ps is the inherent success probability of the entan-
gling protocol and pa=e−�L0 is the photon attenuation in
the channel. These two segments of entanglement can
be connected to generate an entangled state between i
and j� through a local collective Bell measurement on
the two ions k and k� in the same pair. A combination of
the Coulomb CNOT gate and individual ion detections
achieves the desired collective measurement.

The preparation time for each segment of entangle-
ment is Tg� ta /p, and the time for establishing entangle-
ment between the next neighboring nodes i and j �with a
distance 2L0� is given by T2�2Tg �T2�Tg� if we prepare
each segment of entanglement sequentially �in parallel�.
So the time required for establishing entanglement over
n segments with a total communication distance of nL0
is given by Tn�nTg�ne�L0�ta /ps� �or Tn�Tg for the
parallel preparation� with this hybrid approach.

In the above, we have assumed the simplest form of
quantum register, each consisting of only two ions. If we
allow a few more ions in each quantum register, the
above approach can be extended considerably by incor-
porating protocols to purify the entanglement estab-
lished over remote trapped ion qubits �Liang et al.,
2007�.

IV. OUTLOOK

Individual trapped ions are known as the most ad-
vanced material qubit, as they can be localized in one
place for extended periods like a solid while interacting
weakly with their environment. But trapped ions are
also attractive candidates for quantum networking appli-
cations because they can be replicated in different nodes
with nearly identical characteristics, which can be an im-
portant practical feature for the implementation of pho-
tonic quantum networks. While the coupling of trapped
ion qubits to photons is typically small, this is not a fun-
damental shortcoming as there exist probabilistic proto-
cols for the scalable photonic networking of trapped ion
qubits. It is possible to generate scalable entangled
states of many ions through the use of exclusively proba-
bilistic gates, although this will likely require gate suc-
cess probabilities to approach p�10−3 or higher. On the
other hand, when probabilistic gates are combined with
local deterministic gates, a natural situation for small ion
crystals that can be entangled based on their Coulomb
interaction, scalable quantum information processing
can proceed with gate success probabilities that are even
smaller.

Recent experiments have shown the basic features of
photonic networking between separated single trapped
ions, and future technological gains in ion trap photonics
may dramatically increase the probabilistic gate success
rate. Future ion-photonic interfaces will likely exploit
advances in microfabricated ion trap structure �Blatt and
Wineland, 2008� and integrated optical elements. One
example of an ion-photonic network architecture is

pump pumppump

DD

DD

CNOT

DD

DD
BS BS

k 'k j'ii 'j00
LL

00
LL

FIG. 13. �Color online� Schematic realization of quantum re-
peaters with trapped ions based on a combination of the
probabilistic detection-induced remote entanglement and the
local Coulomb gates.

N trapped ion quantum registers
N x N optical

crossconnect switch N/2 beam splitters

CCD Camera

FIG. 14. �Color online� Hierarchical trapped ion quantum computer. N quantum registers �left� each consists of a many-qubit
crystal of trapped ions that can be entangled through deterministic Coulomb gates. One ion within each register is coupled
optically to an N�N optical cross-connect switch in order to propagate quantum information between registers and create
large-scale entangled states among all ions. Such a hierarchical approach to scaling the ion-photon network may allow the scaling
to millions or more trapped ion qubits.
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shown in Fig. 14, where registers of trapped ion crystals
allow local entanglement to proceed though conven-
tional Coulomb gates, and entanglement between regis-
ters is accomplished through the interference of syn-
chronously emitted photons from selected ions through
the use of a reconfigurable N�N optical cross-connect
switch. Such a hierarchical architecture is promising for
the scaling to very large numbers of trapped ion qubits.
There are many other possible architectures, taking the
lead from interconnects in classical processors.

We note finally that while trapped ions are among the
best controlled matter qubits today, in the future it
should be possible to apply the optical protocols dis-
cussed in this Colloquium to other optically active qu-
bits. For instance, the same protocols apply to neutral
atoms in an optical trap �Volz et al., 2006�. Furthermore,
recent experimental progress has shown the manipula-
tion of local electron-spin and nuclear-spin qubits in
nitrogen-vacancy color-center impurities in diamond
�Dutt et al., 2007; Neumann et al., 2008�. All of the pro-
tocols discussed in this Colloquium could ultimately be
applied to the NV-diamond system, as well as other op-
tically active solid-state qubits such as a large class of
rare-earth ion-doped solid-state systems. Such quantum
registers can also be represented by single semiconduc-
tor quantum dots, where the two local qubits are carried
by the electron- and nuclear-spin states. The electron-
spin states can be coupled to photons, and separated
dots can be entangled through the probabilistic entan-
gling protocols discussed above. The local gates on the
electron spin and the nuclear spin could be achieved
with laser manipulation of the hyperfine interaction.
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