
Bigram Model Using Quantum Probability
This mathematics is drawn from Bradley’s Statistical Algebra (2020) and Formal Concept 
Analysis. Understanding when pairs of words mean similar things is important in NLP. For 
example, verb-noun pairs are sometimes clustered to identify “intents” in dialog systems.
 

Note that the individual words aren’t always synonyms - for example, book ≠ make.

Modelling Steps
● Collect example pairs, e.g., “red apple”, “green apple”, “yellow banana”.
● Encode as a state vector        in the tensor product space
● Partial traces of the density operator              encode information

○ Main diagonal: Individual probabilities
○ Off diagonal: Pairwise correlations

Quantum Generative Model
● Give each adj, noun an index, e.g., blue =           shoes = 

○ Concatenate to form bigram index, blue shoes =                 (see bottom right) 
● Use these to form state        and variational circuit trained to model bigram 

distributions
● Best results starting with some noise - like smoothing in language models 
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Building real Artificial General Intelligence (AGI) is a core goal of computer science. 
There are reasons for believing that quantum models and quantum computing will fill 
crucial roles in truly intelligent systems. 
IonQ is already investing in this ambitious goal, asking:
1. What will AGI really need? What necessary properties are lacking today?
2. What advantages might quantum systems offer?
3. What quantum systems today convincingly demonstrate proof-of-concept?
4. What core mathematical / language operations can be identified?
5. For each operation, what are the simplest effective implementations?
These questions help to motivate medium-term challenges and immediate progress.

Quantum Demonstration 
Systems

Quantum SVM and Bag-of-Words Classifiers
Classifying texts to topics is a standard NLP challenge. An example was performed on 
quantum hardware by Lorenz et al QNLP in Practice (2021). Here we extend this work with 
alternatives.
Dataset generated for this purpose:
● 70 training phrases, 30 test phrases, marked with a topic: “skillful woman runs 

application” ⇒ Computing,  “man prepares tasty dinner” ⇒ Food
● Published with lambeq package (with thanks to those authors!).

Distributional Semantic Vectors
Basic Building Blocks

“Die Bedeutung eines Wortes ist sein 
Gebrauch in der Sprache.” (Mostly!)

Wittgenstein, Philosophical Investigations §43 (1953)

“don’t be such an ___. You shall know a word 
by the company it keeps!”

JR Firth, A Synopsis of Linguistic Theory (1957)

Vectors in Language Systems
● Term Document Matrices

○ Information Retrieval since 1960s
○ Term vectors and Doc vectors

● Projection using SVD, NNMR, LDA
○ Latent Semantic Analysis, Topic Maps

● Connectionist Models / Neural Netsφφ

○ Since 1980s, concepts, roles, bindings
○ Word2Vec Embeddings (2013)
○ ELMo, BERT, GPT “contextual” models 

Addition/Combination of Inputs 
From the summation of term vectors to make 
document vectors (1960s) to the deep neural networks 
and activation functions of today, there are situations 
where several contributions needs to be gathered into 
some sort of “additive” combination.
Adder components using fractional X-rotations (right) 
were used in the bag of words classifier experiments.

Different Fractional Ingredients Lead to Different Combination Properties

Quantum NLP Goals
Holy Grails and Cornucopias

Verb Noun Examples Adjective Noun Examples (Used Below)

Book room, arrange 
accommodation,
reserve hotel, make reservation, …

green apple, red apple, yellow banana, ripe banana, 
red pepper, yellow pepper, black shoes, red dress, 
blue suit, white shirt.
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DisCoCat Model 
(Lorenz, Coecke et al)

Quantum-Enhanced Support 
Vector Machine (this work)

Quantum Bag-of-Words Classifier 
(this work)

Uses Categorial Grammar with 
classical parser, creates circuit 
ansatz for nouns, verbs, adjectives, 
creates tensor network.

Uses classical Word2Vec 
embeddings (top right) to encode 
words as feature vectors. Trains 
and runs QSVM for classification.

Encodes each (word, topic) weight 
learned from training in a qubit. 
Classical state maps words / topics 
to qubits. Classified with quantum 
adder circuit (right).

Runs on 6 qubit machine. Runs on 8 qubit machine. Runs on 9 qubit QC (per topic) or 18 
qubit simulator (single run).

Accuracy: 83.3% Accuracy: 90% Accuracy: 100%

This example shows that we can build successful quantum classifiers, and compare models 
for accuracy, sophistication, complexity, and hardware cost. Such design tradeoffs will 
become normal. 

Medium Term Challenges
Storing / accessing state
Language competence requires a lot of information. The distributional patterns and 
correlations between words that we need to know to use them effectively can make 
language models grow very big. Building thoroughly quantum language models is 
one of the many motivating use-cases for qRAM. In the meantime, on quantum 
computers we often work with small artificial datasets, provided the belief that these 
methods could scale up with suitable hardware support is well-motivated.

Representing the Quantum Bigram Model
The quantum bigram model (center) is an example of the dense encoding enabled by 
quantum systems. For a joint distribution with n prefixes and m suffixes, we would 
need nm classical bits just to model “present or absent”. For the quantum model, we 
can use ceil(log_2(n)) + ceil(log qubits, and an encoding convention where each 
prefix and suffix is given a binary index, and the cooccurrence weight is stored in the 
state given by concatenating these two indices.  Creating and reading an arbitrary 
superposition of such states is not yet simple!

Stability through computations combining many signals
Quantum errors can propagate through systems. It’s important to track which 
information is relatively stable in the presence of small errors (such as the difference 
between 1.0001 and 1.0002 as numbers) and which information is entirely changed 
by small errors (such as the difference between “botch” and “batch”).

Example Area: Ambiguity in Language 
1. AGI will need to be aware of many possible goals, intents, actions, across many 

modalities at once, and to recognize which few are relevant now.
2. Quantum systems offer the ability to maintain exponentially many states - even if 

most are never activated or observed!
3. There are several methods in NLP that have convincingly demonstrated that 

ambiguous words can be represented and manipulated using vectors, matrices, 
tensor products, and projections. Are these naturally quantum systems?

4. If so, vectors and linear operators are key mathematical ingredients.
5. What would be a simple effective implementation of this?
Let’s string some techniques together and start building something!

Vectors Can Represent Ambiguity
“A vector is a single point and so cannot represent something comprised of many 
parts such as a polysemous / ambiguous word.” Misconception in NLP literature 
(2012-ongoing)

In quantum mechanics, state vectors are introduced because they can represent 
superpositions of many ingredients - so this mistake doesn’t arise!
Ambiguous words in some models are naturally learned as sums of vectors 
representing particular senses. For example:

Matrices Can Resolve Ambiguity 
Matrix multiplication is an operation used for composition that sometimes resolves 
ambiguity. In this toy domain, “visit(X)” maps a Place X to an Event.

Unwanted senses of “Java” aren’t considered and rejected - they’re just ignored.
That’s handy - but the matrices aren’t unitary gates. So what can we do instead?

This works, but doesn’t scale. Can the same behavior be achieved with fewer qubits? 
Must the mapping from qubits to topics be stored externally in classical memory?

Java - “place” 
or “tech”

Visit - maps “place” to 
“event”

Visit Java is an “event”

Target Distribution Model trained without noise 
(mode collapsing behavior) 

Model trained with noise 

KL-D=1.131 KL-D=0.211
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